Chapter 3.2 part 4

Th 3.9 Every finite integral domain R is a field.
∇ is an integral domain but not a field
P\& Let $a \in R, a \neq O_{R}$. Wanted: a is a unit
(equivalently, there exists
$C \in R$ such that $a c=\left(\begin{array}{l}\text { ? }\end{array}\right.$
Consider the map

$$
\left.\begin{aligned}
f: R & \rightarrow R \\
b & \longrightarrow a b
\end{aligned} \right\rvert\, \quad f(b)=a b
$$

It suffices to prove that f is surjective. Indeed, the $l_{R} \in \operatorname{I}_{m}(f)$ meaning $a C=l_{R}$ for some $c \in R$.
However, a map from a finite set to itself is surjective iff the map is injective.
We thus will prove that f is injective, and this will suffice.
Jor the injectivify, let $b_{1} \neq b_{2}$ (thus $b_{2}-b_{2} \neq O_{R}$).
Their images under f are abr and $a b_{2}$ correspondingly $a b_{1}-a b_{2}=a\left(b_{1}-b_{2}\right) \neq O_{R}$ because $a \neq O_{R}$ by assumption

$$
b_{1}-b_{2} \neq O_{R}
$$

and R is an integral domain
Thus $a a_{1} \neq a b_{2}$, therefore f is infective.

